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Abstract 

The linear and geometrically nonlinear free and forced vibrations of Euler-Bernoulli beams with multi-
cracks are investigated using the crack equivalent rotational spring model and the beam transfer matrix 
method. The Newton Raphson solution of the transcendental frequency equation corresponding to the linear 
case leads to the cracked beam linear frequencies and mode shapes. Considering the nonlinear case, the beam 
transverse displacement is expanded as a series of the linear modes calculated before. Using the discretised 

equation is obtained and solved using the so-called second formulation, developed previously for similar 
nonlinear structural dynamic problems, to obtain the multi-cracked beam backbone curves and the 
corresponding amplitude dependent nonlinear mode shapes. Considering the forced vibration case, the 
nonlinear frequency response functions obtained numerically near to the fundamental nonlinear mode using a 
single mode approach show the effects of the number of cracks, their locations and depths, and the level of 
the concentric harmonic force. The inverse problem is explored using the frequency contour plot method to 
identify crack parameters, such as the crack locations and depths. Satisfactory comparisons are made with 
previous analytical results. 
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1. INTRODUCTION 

 
Understanding the linear and nonlinear dynamic 

behaviour of mechanical systems or some of their 
structural components widely used in engineering 
(such as beams, plates and shells) is one of the main 
problems in structural design and is pervasive 
throughout the civil, mechanical and aerospace 
engineering communities. The designers who have 
to achieve acceptable levels of performance and 
economy, require efficient use of materials while 
ensuring the safety and durability of the structural 
components in order to avoid structural failures [1]. 
Due to various external or internal influences, such 
as moving vehicles in the case of steel bridges, 
winds for tall buildings, waves for offshore 
platforms and high temperatures for 
turbomachinery, defects may occur and sometimes 
dramatically reduce the resistance capacity or the 
structural fatigue life. Consequently, conventional 
analyses of the structural constraints may lead to 
inaccurate security conclusions if they ignore the 
cracks that are very often present [2]. Many studies 
have suggested that nearly 90% of failures in metal 
structures are primarily fatigue failures. Although 
because of its complex nature, the process of 
initiation and propagation of cracks is very silent 

and quite difficult to understand [3], designers have 
no alternative but to ensure that all structural 
components have adequately known fatigue lives. 
The reader interested in more details on this subject 
can be returned to [4 6]. The nature of the fatigue 
process requires a field inspection to control the 
structural behaviour and detect and / or predict 
possible damages and ensure a correct evaluation of 
the residual load capacity. Also, the evolution of 
initiated fatigue cracks must be well controlled in 
order to avoid them to grow to the point of 
complete ruptures and catastrophic failures, 
inducing economical disasters and sometimes a loss 
of human lives, as has been reported in recent 
decades. It is well known that the presence of 
cracks, due to the induced local variations in the 
stiffness and damping characteristics, affect the 
dynamic characteristics of the whole structure to a 
considerable degree. They often occur in structural 
members during the operational life as a result of a 
reduced fatigue strength due to pre-existing flaws 
or high stress concentrations, or due to the 
application of repeated loads in a severe 
environment, or to the growth of cracks initiated 
inside the material during the manufacturing 
processes. The growth of fatigue cracks in 
structural components can be evaluated using data 
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collected during regular field inspections involving 
visual examination and / or use of a variety of non-
destructive evaluation techniques. However, the 
visual inspection efficiency depends mainly on the 
inspector's experience and the type of damages 
observed, making the detection of cracks difficult 
by this method. As the presence of cracks must be 
detected at a very early stage for obvious safety 
reasons, recourse is often made to non-destructive 
detection methods based on the examination of the 
changes in the structural vibration characteristics. 
The basic idea behind such an approach is that the 
modal parameters, such as the natural frequencies, 
the mode shapes, and the modal damping are 
functions of the distribution through the structure of 
the mass, damping, and stiffness so that any change 
in these physical properties alter the dynamic 
response. These extracted physical parameter 
changes are used when possible to extract damage 
information, such as the position, the depth and the 
severity of the damages occurring in a structure 
without disengaging all of the system. Recently, 
long-term structural health surveillance and 
structural vibration analysis techniques have 
become among the main topics interesting 
researchers and engineers having in charge to 
maintain structural integrity. Much work is done to 
define efficient and simple procedures for non-
destructive examination [7]. Two types of 
approaches related to this subject exist: the first, 
called (direct problem), consists on determination 
of the effect of a damage of a known type on the 
structural dynamic characteristics. Typically, the 
damage is modelled mathematically, and then the 
measured frequencies are compared to the predicted 
frequencies to determine the damage. This 
preliminary analysis is necessary to apply the 
second approach called (inverse problem) which 
consists on establishing various ways for 
identifying or predicting the crack locations and 
depths using measurements performed on the 
system. In the present work, the direct problem is 
mainly examined in order to provide workers in the 
field with useful data for crack analysis, in both the 
linear and nonlinear regimes. The inverse problem 
is also approached using the so-called frequency 
contour plot method, considered as one of the most 
favoured tools, used previously in [8,9], and more 
recently in [10] to identify crack parameters such as 
the crack location and depth using the lowest three 
natural frequencies based on linear analysis. As the 
vibration analysis of cracked beams is the basis of 
most structural health surveillance techniques, it 
has received a great deal of attention in the recent 
decades. As a result, a variety of analytical, 
numerical and experimental investigations now 
exist [11 13]. Adams et al studied the specification 
of the crack location in a beam structural element 
by modelling an axial crack by a longitudinal spring 
without calculating the spring stiffness [14]. 
However, the general practice in the application of 
a crack model to a structural damage detection 

problem requires to establish first a relationship 
between the crack parameters and the structure 
characteristics. This relationship is often taken as a 
frequency equation of the cracked beam. 
Consequently, various crack models proposed later 
by many researchers attempted to describe the 
effect of cracks on the dynamic behaviour of 
beams. Three types of crack models may be 
mentioned: the model based on a local stiffness 
reduction [15,16], the spring models [17] and the 
finite element models [18,19]. In the analytical 
models based on a beam element, the crack is 
treated as a local change in rigidity or flexibility at 
the cross section of the crack site. Dimarogonas 
suggested in his pioneering work [20] an attractive 
method, called the transverse crack model, for 
modelling an open edge crack in the case of pure 
bending beam vibrations using an equivalent 
rotational spring connecting the two sides of a beam 
at the crack position. The spring stiffness was 
derived from the stress intensity factors using the 
theory of fracture mechanics. Under the most 
general load, the local flexibility is presented by a 
matrix whose coefficients depend on the crack size 
and geometry [21]. This crack model was validated 
via a comparison with different models in [22], 
demonstrating the adequacy of this latter simple 
model of the crack flexibility based on beam 
elements. Recently, the singularity flexural stiffness 
model, based on the Dirac delta method [23], has 
been found to be equivalent to an internal hinge 
with a rotating spring. This motivated dynamic 
analyses of cracked structures using the shifts in 
natural frequencies to detect the crack sizes and 
locations. In recent years, increased attention has 
been given to solve the direct problem for vibrating 
beams in the presence of local cracks. In general, 
two main types of methods are adopted for studying 
the dynamic behaviour of cracked beams, 
continuous and discrete methods. In continuous 
methods, such as the one used here, a beam is 
divided into a number of sub-beams connected by 
rotating springs at the crack locations and the 
transverse beam vibration equation is solved at each 
interval with appropriate continuity and end 
conditions. Discrete techniques involve use of the 
finite element method [24]. Most of the works 
available, using the continuous method, correspond 
to a structure with a single transverse surface with 
several approaches to determine the natural 
frequency changes [25 30]. The dynamic behaviour 
of a double-cracked beam and a rotor with two 
cracks has been also investigated in [31 36]. In all 
of the above studies, the analysis of the effect of 
cracks on the beam dynamic properties was 
performed using a common approach based on a 
sub-division of the beam into a number of sub-
beams or sub-segments, separated at a crack 
location and connected by rotational springs, with 
different modal displacement functions used for 
each sub-beam. The transverse vibration of an 
Euler Bernoulli beam is governed by a fourth order 
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partial differential equation requiring, after 
variables separation, four coefficients for the modal 
transverse displacement function for each sub-
beam. The four beam end conditions, in addition to 
four continuity conditions at each crack location 
lead to a homogeneous system whose determinant 
must vanish in order to permit non-trivial solutions 
to exist. Equating the determinant to zero leads to 
the frequency equation of the cracked beam. 
Theoretically, this approach can be extended to 
more than one crack and end conditions, leading to 
an increase in the order of the characteristic 
determinant to 4(n+1) for a beam with n cracks. 
Shifrin and Ruotolo proposed in [37] an algebraic 
technique for reducing the order of the determinant 
for a beam with n cracks from 4(n+1) to (n+2). 
Recently, Khiem and Lien proposed in [38] a more 
simplified method based on the transfer matrix 
procedure for evaluating the natural frequencies of 
beams with an arbitrary number of cracks and 
reduced the order of the determinant to 4 by 
relating the variables at the end of each sub-beam 
with those of the beam first end. Later, the methods 
proposed in [37,38] were extended by [39] to the 
evaluation of the longitudinal natural frequencies of 
vibrating bars with an arbitrary number of cracks. 
Li, proposed in [40] an approach using a properly 
derived basic solution, exploiting the fundamental 
solutions for each sub-beam, and obtained the 
natural frequencies by solving a second-order 
determinant. Binici proposed in [41] an extension 
of the procedure presented in [40] to the case of 
beams with multiple cracks in the presence of an 
axial force by selecting the appropriate fundamental 
solutions. Using recurrence formulae, the eigen-
value equation was obtained by evaluating a 
second-order determinant in terms of initial 
parameters satisfying the end conditions and the 
corresponding mode shapes. Few researchers have 
studied the axial load effect on the vibration and 
stability of cracked beams [42,43]. A state of the art 
concerning this topic can be found in [44] with 
particular references. In the studies mentioned 
above, only linear vibrations of cracked beams are 
investigated and the studies including the non-linear 
effects are rather rare. In the literature, cracks are 
considered to be always open or supposed to be 
breathing in time. The nonlinear effect due to a 
breathing or switching crack i.e. cracks that are 
either fully open or fully closed, on the flexural 
vibration of cracked structures has been discussed 
in some papers [45 48]. The results obtained 
showed that the difference of solutions between the 
open and breathing crack models is quite small 
when the amplitude is not very large, and the 
difference becomes significant as the amplitude 
increases. Consequently, most researchers assume 
in their models that the cracks remain open. If the 
effects of large vibration amplitudes cannot be 
ignored, another type of nonlinearity has to be 
examined. Indeed, the health monitoring is more 
strongly required when the structures work in 

severe environments and are subjected to high 
strains and stresses, making it necessary to include 
the effects of geometrical non-linearity in the 
vibration analysis. The treatment of this case is 
complicated because it combines the domains of 
geometrically nonlinear analysis and the fracture 

very few previous works modelling the 
geometrically nonlinear vibrations of multi-cracked 
structures. There have been several attempts to 
mathematically describe the nonlinear structural 
dynamic behaviour but this topic still appears a 
little difficult to handle in practical situations. 
Benamar and co-workers have successfully 
described the problem of geometrically nonlinear 
free and forced vibrations of various types of thin 
straight structures [49 52] 
principle and spectral analysis and showing that the 
concept of normal linear modes of vibration 
remains very useful for expanding the unknown 
displacement series in the nonlinear case. This has 
been demonstrated theoretically by the relative 
mathematical simplicity of the nonlinear semi-
analytical models developed. El Bikri et al 
investigated the free and forced vibrations of beams 
with one edge crack [53]. The objective of the 
present paper is to present an analytical method to 
analyse the linear and geometrically nonlinear free 
and forced vibrations of Euler Bernoulli beams with 
multi-cracks, located at different positions. The 
cracked beam is modelled as an assembly of 
uniform sub-segments connected by massless 
rotational springs presenting the reduced local 
flexibility due to an open non-propagating edge 
crack. The flexibilities of these springs are 
calculated using the fracture mechanics theory. 
Based on the Euler Bernoulli beam theory, the 
differential equations are solved at each segment. 
Four unknown coefficients appear in the solution 
for the deflection function at each sub-segment of 
the cracked beam. To determine these constants, the 
transfer matrix method previously used in [54] is 
employed to satisfy the conditions at the extremities 
of each sub-segments, which leads to a linear 
frequency equation for the damaged beam solved 
iteratively using the Newton Raphson method. This 
equation is expressed in terms of the elements of 
the overall transfer matrix. In addition, the linear 
mode shapes of the damaged beam play a crucial 
role because of their use as trial functions in the 
nonlinear analysis. The crack identification problem 
has been also studied and validated using the 
frequency contour plot method in the case of a 
single crack. The nonlinear case is then developed 
using a semi analytical method and the model 
developed previously in [50]. The nonlinear beam 
transverse displacement function is defined as a 
linear combination of the linear modes. The 
discretized expressions for the total strain and 
kinetic energies of the beam are then derived, and 

reduced to a nonlinear algebraic system which is 
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solved using the so-called second formulation 
developed previously in [55] leading to the basic 
function contribution coefficients to the 
displacement response function of the multi-
cracked beam and to the corresponding backbone 
curve i.e. the amplitude-frequency and mode shapes 
dependence. The nonlinear forced case also 
examined by using a single mode approach as in 
[56], to obtain the nonlinear frequency response 
curves in the neighbourhood of the predominant 
nonlinear mode shape, A parametric study and 
detailed numerical results are given to demonstrate 
the effectiveness of the proposed procedure. The 
calculated frequencies and the corresponding mode 
shapes are expected to be useful to evaluate the 
influence of parameters like the number of cracks, 
the crack locations and depths, the vibration 
amplitude, and the level of the applied harmonic 
force, on the beam dynamic response. 

 
2. LINEAR VIBRATIONS OF A MULTI-

CRACKED BEAM 
 

Before examining the nonlinear vibrations of a 
multi-cracked beam, we start by determination of 
its linear frequencies and mode shapes, in order to 
use them as basic functions in the nonlinear theory. 
The spring crack model and the transfer matrix 
method are used, leading to calculation of a 4×4 
matrix. The steel uniform beam shown in Fig. 1, 
supported by linear and rotational springs at both 
ends, is examined in the present work. It contains N 
cracks of different depths located at different 
positions. The beam material and geometrical 
properties are: E=200GPa, 
material density =7860Kg/m3, thickness h=0.1m, 
width b=0.1m, and length L=10m. x is the 
coordinate along the neutral axis of the beam 
measured from the right end, xj is the coordinate of 
the crack position and w(x,t) is the transverse 
deflection of the beam measured from its 
equilibrium position. 

2.1. Free vibrations 
The free vibrations of the cracked beam 

described above is governed by the following 
differential equation: 

 
4

4
4 0d w w

dx
 (1) 

The transverse displacement function w of the 
beam with ( *x x L  and j jx L ) is defined in 
piecewise by: 
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A closed form solution to this eigenvalue 
problem can be obtained by employing the transfer 
matrix method presented in [54]. The general 
solution for transverse vibrations in the jth span can 
be written as: 
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In which: 

 
2

4 i
i

S
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 (4) 

for i=1 to n, are the beam eigenvalue parameters. 
The constants (Aj, Bj, Cj and Dj) are determined by 
the beam end and continuity conditions at the crack 
locations as follows: 

At the left end 

L

1K

1tK

2K

2tK

2x

1x

1jx
jx

1jx

1w
2w 1jw jw 1jw 1Nw

 
Fig. 1. Physical model of a beam with multiple edge open cracks supported by linear and rotational  

springs at both ends 
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At the right end 
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Kt1, Kt2, K  and K  are the stiffness of the 
transverse and rotational springs at the left and right 
ends of the beam respectively.  

 
2.2. Modelling of a crack in a beam under a 

bending moment  
The continuity and compatibility equations of 

the beam at the jth crack position j are: 
 

 Continuity of the displacement 
 **1

jj
j i ji xx

w w  (7) 

 Continuity of the flexural moment 
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 Continuity of the shear force 
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 The compatibility condition 
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Where *K  is the non-dimensional local rigidity due 
to the crack, related to the local flexibility 
coefficient C  of the rotational springs, expressed 
as [53]: 

 * K LLK
CEI EI

 (11) 

K  being the torsional stiffness of the open crack 
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Where h  is the crack depth and f h  is called 
the crack correction function given by [57]: 
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2.3. Transfer matrix 
The constants (Aj+1, Bj+1, Cj+1 and Dj+1) in the 

(j+1)th span are related to those in the jth span (Aj, 
Bj, Cj and Dj) through the continuity and 
compatibility conditions. They can be expressed by: 
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Where Tj is a 4×4 transfer matrix which depends 
on i .  The general terms of Tj are:  
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Through repeated applications of Eq. (15), the 
four constants in the first segment (Aj, Bj, Cj and Dj) 
can be mapped into those of the last segment, 
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reducing the total number of independent constants 
to four. 

 

1

1
2 1

1

1

1

1

1

1

...N

N

N

N

N

A A
B B

T T T
C C
D D

 (20) 

These four remaining constants (A1, B1, C1 and 
D1) can be found through the satisfaction of the end 
conditions, i.e Eq (6) leading to: 
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Equations (21) and (22) can be expressed in a 
matrix form: 
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Such as:  
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Substitution of Eq. (23) into Eq. (20) leads to: 
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And Eq. (5) lead to: 
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Which can be expressed in a matrix form as: 
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Such as:  
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Equations (28) and (26) lead to: 

   

1 1

2 1 1 1

1 1

1 1

0
... 0

0
0

N

A A
BT T T B B

Y
R C C

D D

 (30) 

Where  

 2 1...NBT T T
Y

R
 (31) 

For the existence of a non-zero solution of the 
homogeneous system (31), the determinant of 
matrix Y must be stated equal to zero, leading to the 
following parametric equation *( , , ) 0g K . 

 det 0Y Y  (32) 
Equation (32) has been solved using the 

Newton Raphson algorithm to find the natural 
frequencies. The corresponding mode shapes have 
been then calculated by the usual algebraic 
procedure. 

 
2.4. Numerical results and discussions 

In order to perform the numerical calculations, a 
computer program has been written using Matlab 
Software. Through this program, it became possible 
to analyse the effects of the number, the positions 
and the magnitudes of the cracks upon the vibration 
frequencies and modes shapes of beams. To test the 
validity and accuracy of the present analysis, the 
values of the vibration frequencies for the first six 
vibration modes have been calculated and 
compared with available data [58]. In Table.1, 
corresponding to fully clamped beams with triple 
cracks, having the following properties: Length 
L=1.4m, width b=0.01m, depth h=0.09m, mass 
density =7855kg/m3  
E=200×109 N/m2. For three cracks positioned at 

1=0.2, 2=0.45 and 3=0.7, the clamped ends are 
obtained by taking Kt1=Kt2=K =K = , the results 
show an excellent agreement of the present study 
with those of [58] since the relative difference does 
not exceed 0.01% for all of the cases considered. 
Additionally, the relative difference seems to 
increase linearly by increasing the crack magnitude.  
Figure 2 gives the ratios of the first three natural 
frequencies of a beam with a single crack to the 
corresponding frequencies of the uncracked beam, 
versus the normalized crack position  and depth 

, for clamped beam end conditions. It can be 
noticed that if a crack is located at a node of a given 
mode, it does not affect its corresponding frequency 
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but it affects predominately the modes whose 
venters are close to the crack location. It appears 
also that the natural frequencies of a cracked beam 
are influenced, as may be expected, by both the 
crack position and the crack depth.  

Using the parameters i, for i = 1 to 10, the 
linear modes, used below in the nonlinear analysis 
as basic functions, are plotted in Fig. 3, showing the 
normalized (a) symmetrical and (b) anti-
symmetrical linear mode shapes of a clamped beam 
containing five equally distributed cracks with a 
depth of =0.3.   

 
Fig. 3. (a) Symmetrical and (b) Anti-

symmetrical mode shapes of clamped beam 
with five cracks corresponding to k/h=0.3 

 

 
Fig. 2. Effect of the crack on the first three natural frequencies of the beam. 

 

Table 1. Comparison of the first six modal frequencies of a clamped beam with three cracks. 

Crack scenarios Method Modes 

Crack depth ratio   1 2 3 4 5 6 

(10-10-10) % 

       
Present 43.1244 118.8202 232.8127 385.0869 575.1024 803.3228 

(a) 43.1323 118.8541 232.9065 385.1886 575.2884 803.5648 
(b) 43.1400 118.8700 232.9300 385.2000 575.3800 803.7000 
(c) 43.1323 118.8522 232.9047 385.1858 575.2675 803.5540 

Rel. diff. % 0.0002 0.0003 0.0004 0.0003 0.0004 0.0004 
        

(30-30-30) % 

Present 42.8548 117.6658 229.5800 381.7393 568.8926 795.1535 
(a) 42.9247 117.9643 230.4249 382.5813 570.4717 797.2471 
(b) 42.9200 117.9300 230.3600 382.4100 570.2200 769.9900 
(c) 42.9198 117.8232 230.2858 382.3678 568.8627 796.4205 

Rel. diff. % 0.0016 0.0020 0.0034 0.0019 0.0017 -0.0092 
        

(50-50-50) % 

Present 42.1218 114.5653 220.7699 378.5744 553.4903 774.1506 
(a) 42.3618 115.5740 223.6569 376.2644 558.3072 780.8314 
(b) 42.3000 115.2700 222.9000 374.3400 555.4700 777.8700 
(c) 42.3028 113.7744 221.8603 373.7671 537.6546 770.4146 

Rel. diff. % 0.0047 0.0027 0.0091 0.0101 0.0055 0.0029 
(a)Solution of the characteristic equation [58]; (b)measurement [58]; (c)calculated by the Rayleigh [58]. *100 × |Average 
[(a), (b), (c)]  Present| / |Average [(a), (b), (c)]|. 
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The effect of the crack positions on the beam 
mode shapes can be clearly seen. Fig. 4 shows the 
normalised linear mode shape changes with the 
crack depth. The presence of five cracks has clearly 
an increasing significant effect when the crack 
depth increases. 

 

 
Fig. 4. The first linear mode shape of clamped 
beam with equally distributed five cracks for 

various case of k/h  
 
3. CRACK IDENTIFICATION BY THE 

FREQUENCY CONTOUR PLOTS  
 

As mentioned above, the crack locations and the 
depths affect the beam frequencies and mode 
shapes. The frequency could then be related to 
different crack locations and depth, as can be seen 
from Fig. 2. Based on this remark, the present 
model and the corresponding program, which have 
the advantage of allowing very easy changes in the 
cracks number, positions and depths, enable one to 
draw the frequency contour curves, corresponding 
to the same frequency ratio and to different 
combinations of crack locations and depths, plotted 
versus the normalized crack location and depth. 
Fig. 5 shows the frequency ratio contours for the 
first three modes of a clamped beam containing an 
open edge crack, which are obtained by the present 
method. Each point on the curve corresponds to a 
possible real crack position and depth. The 
knowledge of the first three frequency ratios is 
theoretically sufficient to identify the crack in the 
beam. Then, the corresponding frequency ratio 
contour lines for each mode could be plotted 
together. A crack belongs to one contour line for 

each mode, and the intersection point(s) indicate the 
two unknown crack parameters. For illustration 
purposes, the curves corresponding to a beam with 
a crack depth =0.1 and =0.3, located at 
=0.65, are plotted in Fig. 6 (a) and (b) respectively. 

The changes in the normalized frequencies for the 
above cracks are in the case of a clamped beam, for 
the first three frequencies (a): The 0.99982 contour 
for the first mode, the 0.99959 contour for the 
second mode and the 0.99999 contour for the third 
mode. For the first three frequencies (b): The 
0.99840 contour for the first mode, the 0.99642 
contour for the second mode and the 0.99998 
contour for the third mode, as shown in the figure. 
The intersection points indicate a crack depth 

=0.1 and =0.3 and two crack positions of 
=0.35 or 0.65. Due to the structural symmetry in 

the clamped cases, the three contours would give 
two probable crack positions. The actual position 
can be identified by adding a concentric mass to the 
beam, which would make the vibration modes 
asymmetric [8,10]. 

 
4. NONLINEAR VIBRATIONS OF A BEAM 

WITH MULTI-CRACKS 
 

The dynamic behaviour for a conservative 
system may be obtained by application of 

as:  
 

2

0 0V T dt  (33) 
In which  indicates the variation of the integral. 

In the above equation, T is the kinetic energy, V is 
the total strain energy which can be written as the 
sum of the strain energy due to the bending Vb, the 
axial strain energy due to the nonlinear stretching 
forces induced by large deflections Va and the crack 
strain energy Vc. 
 b a cV V V V  (34) 

The expressions adopted here in view of the 
problem examined and the hypotheses adopted are 
[53]: 

 
Fig. 5. The lowest three modal frequencies ratio contours of a fully clamped cracked beam  
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Upon assuming harmonic motion and expanding 
the transverse displacement w in the form of a finite 
series of basic spatial functions {wi, i=1 to n}, 
chosen here as the cracked beam linear modes, one 
gets: 
 , sini i iw x t q t w x a w t  (39) 

Where the usual summation convention for 
repeated indices is used. Substituting Eq. (39) into 
Eqs. (35  38) and performing the discretization 
leads to: 

 2 21 cos
2 i j ijT a a m t  (40) 

 21 sin
2

b
b i j ijV a a k t  (41) 

 41 sin
2a i j k l ijklV a a a a b t  (42) 

 21 sin
2

c
c i j ijV a a k t  (43) 

Where the ai n 
contribution coefficients and  is the associated 

frequency. The terms b
ijk  and c

ijk  denote the 

classical rigidity tensors due to Vb and Vc 
respectively, bijkl presents the non-linearity tensor 
due to Va and mij stands for the mass tensor 
attributable to T. 

For a general parametric study, a non-
dimensional formulation given by: 

 * * *
i i

xw x hw hw x
L

 (44) 

 

2 2
2

* * 3 * 3

2

*2 4

, , ,
ij ij ijkl

ij ij ijkl

m k bEIh EIhSh L
m k L b L

EI
SL

 (45) 

By a , the following 
set of nonlinear amplitude equations is obtained: 

        * * *2 *3 0, 1,..., .
2i ir i j k ijkr i ira k a a a b a m r n  (46) 

Putting ,ij k l ijklb A a a b  the nonlinear 

geometrical rigidity matrix B  is defined, in which 

1 2, ,..., T
nA a a a is the vector of unknown 

coefficients ai. Introducing B  in Eq. (46) allows 
the following matrix equation to be written: 

    * * *2 *3
2

K A B A A M A  (47) 
*2  may be obtained as in [53] by pre-

multiplying Eq. (46) by TA , leading to: 

 
* *

*2
*

3 2i j ij i j k l ijkl

i j ij

a a k a a a a b
a a m

 (48) 

Where *
ijk , *

ijklb  and *
ijm  stand for the 

dimensionless classical rigidity tensor, the 
nonlinear rigidity tensor and the mass tensor, 
respectively, which are defined as: 

* *

2 * 2 *2 * 2 *
1* *

*2 *2 *2 *20
1

j j

N
j ji i

ij k
k x x

w ww wEIdx
x x K x x

k

(49) 

  
** * *

1 1* * *
* * * *0 0

ji k l
ijkl

ww w w
dx dx

x x x x
b  (50) 

 
1* * * *
0ij i jm w w dx  (51) 

For a uniform beam with a rectangular cross-
section, 3  since 2 12h S I . 

 
Fig. 6. Crack identification by frequency contours from three different modes 
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Finally, by Substituting Eq. (48) into Eq. (46) 
one can obtain the following nonlinear algebraic 
system  

 

* *

* *
*

*

3
2

3 2
0

i ir i j k ijkr

i j ij i j k l ijkl
i ir

i j ij

a k a a a b

a a k a a a a b
a m

a a m

 (52) 

Equation (52) is identical to that obtained in 
[53] for the nonlinear free vibrations of beams 
using Hamilton's principle and integrating the time 
functions over the range 0,2 . These 
equations are a set of nonlinear algebraic equations, 
involving the parameters *

ijm , *
ijk  and *

ijklb  which 
are 
the range [0,1]. In order to obtain the numerical 
solution for the nonlinear problem in the 
neighbourhood of a given mode, the contribution of 
this mode is chosen and those of the other modes 
are calculated numerically using the iterative 
method used in [53] or explicitly with the so-called 
second formulation [55] presented below.  

 
4.1. Brief review of the second formulation 

To obtain the beam nonlinear mode shapes and 
resonance frequencies at large vibration amplitudes 
the set of nonlinear algebraic Eq. (52) may be 
solved using the second formulation presented in 
[55]. The basic idea behind this formulation 
consists on writing the contribution vector to the 
nonlinear mode considered as 1 3 11, ,...,A a  
to indicate that 1a   is the predominant contribution.  

Then, considering the expression *
i j k ijkra a a b  of Eq. 

(52), third and second order terms with respect to 
i , i.e. terms of type i j k ijklb  and of the type 

1 1i j ij ra b  are neglected. This leads to: 

 * 3 * 2 *
1 111 1 11i j k ijkr r i ira a a b a b a b  (53) 

Substituting and rearranging permits one to 
write Eq. (46) in matrix form as: 

 

* *2 * *

3 *
1 111

3
2

3
2

RI RI RI I RI

i

K M A A

a b
 (54) 

Where the matrices * *
RI ijK k  and 

* *
RI ijM m , associated with the first nonlinear 

mode, are obtained by varying i and j in the set (3, 
*
I  depends on ai, with a general term 

*
ij  equal to 2 *

1 11ija b . The reduced unknown vector 

3 5 11, ,...,T
RIA  presents the modal 

contributions that can be obtained very easily by 
solving the linear system (54) of five equations and 
five unknowns. The same procedure can be applied 
to get the other nonlinear cracked beam mode 
shapes. 

 
4.2. Numerical results and discussions 

Before considering in this section the beam 
shown in  Fig. 1, with five evenly distributed 
cracks, and in order to test the accuracy of the 
procedure of solution used, i.e. the second 
formulation mentioned above, a comparison is 
made in Tables 2-3 between results obtained here 
and the results reported in [53], based on an 
iterative solution, corresponding to a beam with a 
single crack at the middle. In Table. 2, the first 
nonlinear mode shape of a clamped cracked beam is 
presented, with a1 varying from 0.05 to 0.6 and 

=0.1. In Table. 3, the nonlinear frequency 
parameters obtained here from nonlinear analysis at 
very small vibration amplitudes, corresponding to 
the assigned contribution (b) a1=0.005 and (c) 
a1=0.05, are compared to those based on linear 

Table 2. First nonlinear mode shape of a clamped beam with an edge crack at the center obtained with six symmetric basic 
functions. 

 1a  maxw  * *
nl l  

0.1 

 Present [53] Rel Diff % Present [53] Rel Diff % 

0.05 0,079403 0,079576 0,22 1,00114 1,00054 0,06 

0.3 0,475178 0,476171 0,21 1,040223 1,039429 0,08 

0.6 0,943616 0,945722 0,22 1,152496 1,148448 0,35 

 
Table 3. Comparison of dimensionless frequency parameters for different crack depths: (a) linear results, (b)  (c) 

nonlinear results 

  0.1 0.3 0.5 

  Present [53] Rel Diff % Present [53] Rel Diff % Present [53] Rel Diff % 

(a) *
l   22.3900 22.3080 0.366 21.8332 21.9363 0.472 20.6099 20.9936 1.86 

(b) *
nl  22.3904 22.3082 0.367 21.8356 21.9366 0.463 20.6304 20.9939 1.76 

(c) *
nl  22.4280 22.3335 0.421 21.8733 21.9628 0.409 20.6692 21.0232 1.71 

Rel Diff = 100*|Present - [53]| / Present 
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analysis (a), for various crack depths. A reasonably 
good agreement is found in all cases showing that 
the nonlinear model tends to the linear theory at 
small vibration amplitudes [53].  

 

 
Fig. 7. Backbone curves of a clamped beam 
with five cracks, in the vicinity of the first 

mode, for various crack depths 
 

The effect of the crack depth and the vibration 
amplitude on the nonlinear behaviour appears 
clearly in Fig. 7 giving the backbone curves 
associated to the first nonlinear mode shape of a 
clamped beam with equally distributed five cracks 
and different crack depth values.   As mentioned in 
[53], it is seen that increasing the crack depth leads 
to an increasing in the frequency ratio due to the 
fact that the linear frequency, which is at the 
denominator, decreases with increasing the crack 
depth (Table. 2). 

 

 
Fig. 8. The normalized first nonlinear mode 
shape of a clamped beam with five cracks, 

corresponding to various vibration amplitudes 
and k/h=0.3 

 

 
Fig. 9. The curvature distribution associated 
to the nonlinear deflection response function 

of a clamped beam with five edge cracks, 
corresponding to various vibration amplitudes 

and k/h=0.3. 
 

The corresponding normalized nonlinear 
fundamental modes and associated curvatures 

distributions obtained via the present model for 
various values of the maximum non-dimensional 
amplitude are plotted in Figures 8 and 9 
respectively for a relative crack depth equal to 

/h=0.3, showing the mode shape amplitude 
dependence of the clamped beam with five edge 
cracks with an increase of curvatures near to the 
clamped ends. This may lead one to expect that the 
flexural stresses will increase non-linearly near to 
the clamped end with the increase of the vibration 
amplitude. Consequently, the geometrically 
nonlinear theory presented here shows that is can be 
inaccurate to use frequency and stress data obtained 
by linear theory.  

 
5. NONLINEAR FORCED VIBRATIONS 
 

Consider forced vibrations of the multi-cracked 
beam, shown in Fig. 10, loaded by the concentrated 
harmonic force ,F x t  applied at the point xf. The 
generalised forces Fi associated to the physical 
force are given by: 
 ,i iSF t F x t w x dx  (55) 
In which wi is the beam ith mode. The force may be 
expressed as: 
 , sinc c

e fF x t F t x x  (56) 
 

 
Fig. 10. Details of the applied concentrated 

force 
Where e  is the excitation frequency and  is 

the Dirac function. The generalized force c
iF t  is 

given in this case by: 
 sin sinc

i e i f i eF t F t w x f t  (57) 
In the reminder of this section, the nonlinear 

forced vibration of a cracked been is examined 
using the single mode approach.  As has been 
shown in [56], the so-called multidimensional 
Duffing equation, i.e. Eq. (46) to which a right hand 
side corresponding to the vector of generalised 
forces is added, reduces, when only one mode is 
assumed and the harmonic balance method is 
applied, to:   

 
2* * *

21111 1
1 1* * *

11 11

31
2

e

l

b fa a
k k

 (58) 

where *2 * *
11 11l k m  and * 3 *

1 1
c

ff L F EIh w x . 
Equation (58) can be also written as: 

 
* 2 **3 11 1

1 1* **
1111 1111

2 21 0
3 3

e

l

k fa a
b b

 (59) 
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This equation is a third-degree algebraic 
equation, solved classically using the Cardan 
method. Specifying the parameters *

11k , *
1111b  and 

*
1f , for a clamped beam with five edge cracks, 

gives the analytical frequency-amplitude 
relationship. 

  
5.1. Numerical results and discussions 

Before examining the nonlinear forced response 
of cracked beams, and in order to validate the 
proposed procedure, the solutions of Eq. (59), 
obtained by the present model in the neighbourhood 
of the first nonlinear mode shape, are compared in 
Fig. 11 with those reported in  [56], for the case of 
clamped-clamped beam excited by a harmonic 
concentrated force *

1 100f  at its middle. A very 
good agreement may be noticed. 

 

 
Fig. 11. Nonlinear frequency response 

functions of a clamped beam, based on the 
single mode approach obtained by present model 

(1) and values from reference [56] (2).  
 

 

 
Fig. 12. Nonlinear frequency response 

functions, based on the single mode approach, 
of a clamped beam, with five edge cracks, for 

various levels of the harmonic excitation 
forces 

 
Figure 12 shows the nonlinear frequency 

response functions in the neighbourhood of the first 
nonlinear mode shape for various levels of the 
harmonic dimensionless excitation force *

1f  
applied at the middle for the case of a clamped 
beam with five edge cracks equitably distributed 
and k/h=0.3. The qualitative nonlinear behaviour 
obtained is of the hardening type, characterizing the 
nonlinear frequency response functions of systems 
with a cubic non-linearity. It includes multivalued 
regions in which the jump phenomena, very well 

known in nonlinear frequency response testing, 
may occur.  As no damping is involved, the curves 
remain open, and the dashed curve, in the middle, 
correspond to the backbone curve. Figure. 13 
presents the nonlinear frequency response curves of 
a clamped beam with five edge cracks, 
corresponding to *

1 50f , for various crack depths. 
It may be noticed that the increase in the crack 
depth induces an increase in the hardening effect. 
This remark may be useful as an indication of the 
crack propagation when analysing experimental 
data. In Fig. 14, it can be seen that the number of 
cracks increases the amplitude of vibration and 
reduces the resonant frequencies of the beam. 
However, the vibration amplitudes and resonant 
frequencies are more sensitive to the number of 
cracks at its lower values. This effect implies that 
the presence of one deep crack may have a more 
significant effect than more cracks with lower 
depths. 
 

 
Fig. 13. Nonlinear frequency response 

functions, based on the single mode approach, 
of a clamped beam, with five cracks, for 

various crack depths 
 

 
Fig. 14. Nonlinear frequency response 

functions, based on the single mode approach, 
of a clamped beam, with five cracks, for 

various number of cracks 
 
6. CONCLUSIONS 
 

The linear and geometrically nonlinear free and 
forced vibrations of Euler-Bernoulli multi-cracked 
beams are studied using an equivalent rotational 
spring model at each crack location. The linear free 
vibrations of the beam have been analysed using the 
matrix transfer method which reduces the size of 
the determinant which has to be set equal to zero to 
only 4×4, saving a considerable calculation time 
when determining the linear natural frequencies and 
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associated modes shapes of the multi-cracked beam 
examined. The modes calculated by linear analysis 
are used as trial functions in the nonlinear 
formulation. A computer program has been written 
and used to investigate the effects of the crack 
depths and locations on the linear natural 
frequencies and modes shapes of the beam. The 
results show that the presence of cracks induces, as 
may be expected, a decrease in the beam natural 
frequencies, except those whose nodes correspond 
to the crack locations. An important result to retrain 
is that the modes are also affected by the presence 
of cracks. This fact, related to geometric 
nonlinearity, is expected to be useful when 
considering the inverse problem of crack detection 
and identification. The frequency contours method 
has been described and validated based on the 
current working model following the procedure in 
[8,10], and an illustrative example has been given 
for a clamped beam with one crack. The theoretical 
model developed previously for nonlinear 
vibrations of various thin elastic structures, based 

then been used here to reduce the nonlinear free 
vibration problem to a set of a nonlinear algebraic 
system involving the classical rigidity and mass 
tensors, and a fourth order tensor due to the 
geometrical non-linearity. To solve the nonlinear 
amplitude equation obtained, the so-called second 
formulation in [55], permitted easy calculation of 
the nonlinear free response function, involving not 
only the fundamental mode, but also the basic 
function contribution coefficients of the higher 
modes of the multi-cracked beam, which traduces a 
change in the response deflection shape with the 
amplitude of vibration, inducing, among other 
effects, a nonlinear increase of curvatures near to 
the beam clamps. Numerical results, corresponding 
to a clamped beam containing five cracks equitably 
distributed over the length, for various values of the 
crack depths, and for vibration amplitudes up to 
about more than once the beam thickness are given, 
showing a hardening geometric nonlinearity type, 
which is amplified by the presence of cracks. The 
effect of geometrical non-linearity appears in the 
deformation of the normalized first mode shape, 
accentuated when the vibration amplitude increases. 
The curvature increases close to the clamps at large 
deflection amplitudes, which means that the 
bending stress has a more important increase with 
the growth of the amplitude in such nonlinear cases. 
In the present work, forced vibrations of clamped 
multi-cracked beams, excited by a harmonic 
concentrated force, have been also investigated. 
The point force was applied in such a manner to 
ensure that the first mode is predominant in the 
beam response, justifying use of the single mode 
approach, which assumes that only the first mode is 
involved in the response. The amplitude-frequency 
relationships have been obtained for various levels 
of the excitation forces, various values of the crack 
depth and number of cracks. All curves exhibit a 

classical behaviour of the hardening type, usually 
known in nonlinear systems with a cubic non-
linearity. The numerical results show that the 
presence of a crack with a greater depth may have a 
more important effect on the sensitivity to the 
amplitude of vibration and on the frequencies of 
resonance than a multitude of cracks with smaller 
depths. 
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